Supramolecular Amino Acid Based Hydrogels: Probing the Contribution of Additive Molecules using NMR Spectroscopy

نویسندگان

  • Susana M Ramalhete
  • Karol P Nartowski
  • Nichola Sarathchandra
  • Jamie S Foster
  • Andrew N Round
  • Jesús Angulo
  • Gareth O Lloyd
  • Yaroslav Z Khimyak
چکیده

Supramolecular hydrogels are composed of self-assembled solid networks that restrict the flow of water. l-Phenylalanine is the smallest molecule reported to date to form gel networks in water, and it is of particular interest due to its crystalline gel state. Single and multi-component hydrogels of l-phenylalanine are used herein as model materials to develop an NMR-based analytical approach to gain insight into the mechanisms of supramolecular gelation. Structure and composition of the gel fibres were probed using PXRD, solid-state NMR experiments and microscopic techniques. Solution-state NMR studies probed the properties of free gelator molecules in an equilibrium with bound molecules. The dynamics of exchange at the gel/solution interfaces was investigated further using high-resolution magic angle spinning (HR-MAS) and saturation transfer difference (STD) NMR experiments. This approach allowed the identification of which additive molecules contributed in modifying the material properties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Probing self-assembled 1,3,5-benzenetrisamides in isotactic polypropylene by 13C DQ solid-state NMR spectroscopy.

Using (13)C double quantum solid-state NMR spectroscopy, we were able to observe nuclei of a supramolecular BTA based additive on the nanoscale in a matrix of i-PP at a concentration of only 0.09 wt%. These nuclei exhibit the analogous structural features as the crystalline phase of the neat additive.

متن کامل

Using solution state NMR spectroscopy to probe NMR invisible gelators.

Supramolecular hydrogels are formed via the self-assembly of gelator molecules upon application of a suitable trigger. The exact nature of this self-assembly process has been widely investigated as a practical understanding is vital for the informed design of these materials. Solution-state NMR spectroscopy is an excellent non-invasive tool to follow the self-assembly of supramolecular hydrogel...

متن کامل

Probing the surface chemistry of self-assembled peptide hydrogels using solution-state NMR spectroscopy.

The surface chemistry of self-assembled hydrogel fibres - their charge, hydrophobicity and ion-binding dynamics - is recognised to play an important role in determining how the gels develop as well as their suitability for different applications. However, to date there are no established methodologies for the study of this surface chemistry. Here, we demonstrate how solution-state NMR spectrosc...

متن کامل

Exceptionally small supramolecular hydrogelators based on aromatic–aromatic interactions

We report herein the use of an aromatic-aromatic interaction to produce small molecule hydrogelators that self-assemble in water and form molecular nanofibers in the resulting hydrogels. Among these hydrogelators, a hydrogelator (6) made from a phenylalanine and a cinnamoyl group represents the lowest molecular weight (MW = 295.33 g/mol) peptide-based hydrogelator prepared to date. The supramol...

متن کامل

pH Sensitive Hydrogel Based Acrylic Acid for Controlled Drug Release

Hydrogels, due to their unique potentials such as high-water content and hydrophilicity are interest for the controlled release of drug molecules. The present study aims to create a controlled-release system through the preparation and characterization of hydrogels based on pH-sensitive polymers such as poly (acrylic acid). Poly (acrylic acid), p(AA), hydrogel has been synthesized by radical po...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2017